the laws of logs

In your next 109 workshop (workshop 5) you will see that an exponential equation (that describes an exponential graph) has been converted to a straight line equation by using logarithms. It is going to be useful for you to be able to do this conversion yourselves - and I will go through this in my next post - but before I do that I want to make sure you are ok with how to manipulate logarithms...

Here are some of the laws of logarithms:

1. Log10 (m x n)    =    Log10m + Log10n

proof:


Log10 (100 x 100)  =  Log10 (10000) =   4

which is the same as:

Log10 (100 x 100)  =  Log10100  +  Log10100  =   2 + 2  =   4



2. Log10 (m / n)    =    Log10m - Log10n

proof:

Log10 (1000 / 100)    =    Log1010  =  1

which is the same as:

Log10 (1000 / 100)    =    Log101000 - Log10100  =  3 - 2  =  1 



3. Log10 (mn)    =    n x Log10

proof:


Log10 (1002)  =  Log10 (10000) =   4

which is the same as:

Log10 (1002)  =  2 x  Log10100  =   2 x 2  =   4



It is going to be useful for you to be familiar with these rules for 109 workshop 5...

Comments